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Abstract

An analytic and numerical examination of the slow wave Cerenkov free electron maser is pre-

sented. We consider the steady state amplifier configuration as well as operation in the self-

amplified spontaneous emission (SASE) regime. The linear theory is extended to include electron

beams that have a parabolic radial density inhomogeneity. Closed form solutions for the dispersion

relation and modal structure of the electromagnetic field are determined in this inhomogeneous

case. To determine the steady state response, a macro-particle approach is used to develop a set of

coupled nonlinear ordinary differential equations for the amplitude and phase of the electromag-

netic wave, which are solved in conjunction with the particle dynamical equations to determine the

response when the system is driven as an amplifier with a time harmonic source. We then consider

the case in which a fast rise time electron beam is injected into a dielectric loaded waveguide. In

this case, radiation is generated by SASE, with the instability seeded by the leading edge of the

electron beam. A pulse of radiation is produced, slipping behind the leading edge of the beam due

to the disparity between the group velocity of the radiation and the beam velocity. Short pulses of

microwave radiation are generated in the SASE regime and are investigated using particle-in-cell

(PIC) simulations. The nonlinear dynamics are significantly more complicated in the transient

SASE regime when compared with the steady state amplifier model due to the slippage of the

radiation with respect to the beam. As strong self-bunching of the electron beam develops due to

SASE, short pulses of superradiant emission develop with peak powers significantly larger than the

predicted saturated power based on the steady state amplifier model. As these superradiant pulses

grow, their pulse length decreases and forms a series of soliton-like pulses. Comparisons between

the linear theory, macro-particle model, and PIC simulations are made in the appropriate regimes.
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I. INTRODUCTION

It is well known that the passage of an electron beam through a slow wave structure can

be used either to amplify or generate electromagnetic radiation. The general mechanism

for microwave generation by the Cerenkov effect is the interaction of the slow space charge

wave on an electron beam with the normal modes of a dielectric lined waveguide. The

interaction is strongest when the beam velocity is synchronous with the phase velocity of

the electromagnetic wave. A discussion of the subject of stimulated Cerenkov radiation can

be found in Walsh [1]. Cerenkov masers are attractive sources of radiation at centimeter and

millimeter wavelengths [2–4] and have demonstrated high power capabilities [5, 6]. Cerenkov

masers also have applications in short pulse microwave generation by the SASE mechanism

as observed by Wiggins et al. [7]. An excellent treatment of the general subject of beam-wave

interaction can be found in the text by Schächter [8].

This paper analyzes both the steady state and transient response of the Cerenkov maser

for TM0n modes with inhomogeneous electron beams. The linear theory of the Cerenkov

maser is discussed in Sec. II, for which there exists a substantial body of literature. Shoucri

[9] calculates the dispersive properties and instability growth rates of an unmagnetized elec-

tron beam in a dielectric loaded waveguide. Mishra and Tripathi [10] and Kim et al. [11]

examine the case for an electron beam with finite v⊥ and determine the dispersion relation

for both the Cerenkov and cyclotron instabilities. Chang et al. [12] consider a finite width

sheet beam over a dielectric layer in a rectangular waveguide. They also discuss the dis-

persion relation for hybrid modes in this geometry as well as mode competition and input

and output mode converters to be used in an amplifier system. In addition, Joe et al. [13]

consider a dispersion analysis for finite width sheet beams propagating over a grating in a

rectangular waveguide. Their analysis includes hybrid modes and they examine convective

instabilities of the forward waves and absolute instabilities of the backward waves. We ex-

tend the linear theory to include electron beams that have a parabolic radial inhomogeneity

in the equilibrium particle density in a dielectric loaded waveguide. Godfrey [14] addresses

the linear theory of unneutralized electron beams in a waveguide for arbitrary radial inhomo-

geneities in beam energy or beam density by numerically solving the differential equations

for the normal modes of the system, but that system did not include dielectric loading and

hence does not allow for unstable growth of Cerenkov radiation. We examine the case when
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the waveguide mode and space charge waves on the electron beam are coupled and, for the

case of a parabolic density profile, determine exact solutions for the dispersion relation and

modal structure in terms of confluent hypergeometric functions.

Section III presents a macro-particle model of the Cerenkov amplifier configuration. A

macro-particle model is used to determine the saturation of the Cerenkov instability. Lemons

and Thode [15] consider both the linear and nonlinear regime of operation of the Cerenkov

maser; however, their nonlinear analysis only provides an estimate of the saturation ampli-

tude based on phase trapping of beam electrons. Freund [16] and Freund and Ganguly [17]

develop a three-dimensional macro-particle model of the Cerenkov amplifier for weak beams

based on models similar to those used for the analysis of gyrotrons and free electron lasers.

It has the advantage of reduced computational requirements due to the extraction of the

fast behavior of the wave-particle dynamics. This methodology is used to bridge the gap be-

tween simple linear models and PIC codes which have much more extensive computational

requirements. In their analysis, which assumes weak beams and small growth rates, the

waveguide modes are unperturbed by the presence of the electron beam. Near wave-particle

synchronism, a set of coupled nonlinear ordinary differential equations are derived for the

wave amplitude and phase in terms of the microscopic particle current. These differential

equations are closed by the relativistic Lorentz force equation. This technique explicitly ex-

tracts the fast spatial behavior of the wave-particle dynamics. In the intense beam regime,

PIC codes are used to study the nonlinear properties of Cerenkov amplifiers. Pointon and

DeGroot [18] and Weatherall and Main [19] study the Cerenkov amplifier using PIC codes

with periodic axial boundary conditions.

Numerical results from the linear theory of Sec. II and the steady state amplifier model of

Sec. III are presented in Sec. IV for a typical amplifier configuration. The dispersion relation

is determined for a variety of beam currents and scale lengths of the parabolic density profile.

The same system is then examined using the steady state amplifier model. In the linear

regime, the dispersive properties of the system are extracted and compared with that of the

linear theory. In addition, phase trapping of the beam electrons and subsequent saturation

of the instability is observed. The amplifier efficiency is determined and compared with

simple estimates based on energy conservation arguments.

In Sec. V results from PIC simulations of the Cerenkov maser are presented for the sin-

gle pass transient regime for times less than the transit time of the electron beam through
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the system. In these simulations microwave generation due to the SASE mechanism results

from the injection of a fast rise time electron beam into the Cerenkov maser which seeds the

instability. From the results of these simulations, comparisons are made to the linear and

macro-particle model results of Sec. IV in the appropriate regimes. Effects such as particle

phase trapping and subsequent saturation of the instability are analyzed to estimate the ef-

ficiency of the microwave source. Growth rates compare favorably with the results from the

linear theory and saturation favorably with estimates produced by the macro-particle model

of Freund [16] and Freund and Ganguly [17]. Higher power can be achieved in amplifiers

by tapering the phase velocity in the amplifier so that the bunches can remain synchronous

with the wave for a longer time [20]. Naqvi [20] also achieved higher efficiencies by utilizing

bunch compression in a two stage slow wave structure. However, high power in the transient

regime can also be achieved due to distributed effects between the electromagnetic field and

the bunch, requiring the behavior of the instability in the nonlinear transient regime to

be investigated more carefully. SASE driven superradiance has been observed in Cerenkov

masers by Ginzburg et al. [21] and Jaroszynski et al. [22]. In this regime, it is important

to include the effect of the slippage of the radiation pulse along the electron beam since the

group velocity of the radiation pulse may be significantly slower than the beam velocity. As

the pulse continues to evolve in this nonlinear regime, the amplitude may exceed the satura-

tion amplitude as calculated from the steady state amplifier model and be accompanied by

a decreasing pulse width, and a further decrease in group velocity. Simulations show that a

series of pulses, typically ∼ 2-6 rf cycles in length are generated. From the PIC simulations,

the evolution of the SASE generated superradiant pulses are examined.

II. LINEAR THEORY

In this section, we examine the linear steady-state response of the Cerenkov maser. We

derive a complex dispersion relation for TM0n modes that describe the interaction of a rel-

ativistic electron beam with a radial charge density inhomogeneity as it passes through a

dielectric loaded circular waveguide. Figure 1 shows the configuration for the Cerenkov

maser, consisting of a perfectly conducting cylindrical waveguide of radius R0 having a di-

electric annulus with inner radius Rd located immediately inside the waveguide. An electron

beam fills the vacuum region within the dielectric annulus with a parabolic radial density
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FIG. 1: Configuration of the Cerenkov maser.

inhomogeneity

nb(r) = n0

(

1 + δ
r2

R2
d

)

0 ≤ r < Rd, (1)

with the restriction that δ ≥ −1. The beam has axial velocity v0, is assumed to be cold, and

confined by a large magnetic field so that the beam motion is longitudinal and cyclotron

instabilities unimportant. Assuming a harmonic solution of the form ei(kzz−ωt), the defining

differential equations for the axial electric field in the beam and dielectric regions are given

by,
{

1

r

d

dr

(

r
d

dr

)

+ κ2

[

1 − ω2
b (r)

Ω2

]}

Ez(r) = 0 0 ≤ r ≤ Rd, (2)

and
[

1

r

d

dr

(

r
d

dr

)

+ κ2
ε

]

Ez(r) = 0 Rd ≤ r ≤ R0, (3)

where the transverse wavenumbers are defined for the beam and dielectric regions as,

κ2 =
ω2

c2
− k2

z , (4)

κ2
ε =

εω2

c2
− k2

z , (5)

respectively. The beam resonance term is given by

Ω2 = γ3(ω − kzv0)
2, (6)

and the inhomogeneous beam plasma frequency is

ω2
b (r) = ω2

b0

(

1 + δ
r2

R2
d

)

, (7)

where ω2
b0 = e2n0/mε0, γ = 1/

√

1 − β2, and β = v0/c. For the parabolic density profile

defined in Eq. (1), it is possible to find closed form solutions for Eq. (2) which can be cast
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into a standard form by using the changes of variables,

x = iαr2, α = i

√
δκωb0

ΩRd
, Q = κ2

(

1 − ω2
b0

Ω2

)

. (8)

The equation defining the axial electric field in the beam region can be rewritten as a

Kummer differential equation,

x
d2ψ

dx2 + (1 − x)
dψ

dx
+

1

4

(

Q

iα
− 2

)

ψ = 0, (9)

where

Ez = E1ψe
−iαr2/2, (10)

and ψ is the solution to the Kummer differential equation, given by

ψ = M

[

1

4

(

2 − Q

iα

)

, 1, x

]

, (11)

where M(a, b, x) is a Kummer function, sometimes denoted as the confluent hypergeometric

function 1F 1(a, b, x) [23]. The second linearly independent solution to Eq. (9) is logarith-

mically singular at r = 0 and is therefore not included as part of the solution in the beam

region for 0 ≤ r ≤ Rd. The solution for the axial electric field in the dielectric annulus

region defined by Eq. (3) is given by

Ezε = E2J0(κεr) + E3Y0(κεr). (12)

The dispersion relation is obtained by applying boundary conditions to the system, which

allows the three undetermined constants E1, E2, and E3 to be related. The boundary con-

ditions for the tangential electric fields are Ezε(R0) = 0 and Ez(Rd) = Ezε(Rd). In addition,

the boundary condition for the normal component of electric displacement at the beam-

dielectric interface is Er(Rd) = εErε(Rd), which requires evaluating the radial derivative of

the axial electric fields at Rd. The dispersion relation can be written as

iακεRd

εκ2

{

1 −
(

1 − Q

2iα

)

M
[

1
2

(

3 − Q
2iα

)

, 2, iαR2
d

]

M
[

1
4

(

2 − Q
iα

)

, 1, iαR2
d

]

}

+W = 0, (13)

where

W =
J0(κεR0)Y1(κεRd) − J1(κεRd)Y0(κεR0)

J0(κεRd)Y0(κεR0) − J0(κεR0)Y0(κεRd)
. (14)

It should be noted that the arguments of the Kummer functions in the numerator and

denominator of Eq. (13) are different, resulting from evaluating the radial derivative of the
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Kummer function which is required to evaluate the normal electric displacement at the

beam-dielectric interface. It is instructive to look at the limiting case of Eq. (10), Eq. (11),

and Eq. (13) as δ → 0. In this case, α→ 0, and we have [24]

lim
α→0

M

[

1

2

(

3 − Q

2iα

)

, 1, iαr2

]

=
2

Q1/2r
J1(Q

1/2r), (15)

and

lim
α→0

M

[

1

4

(

2 − Q

iα

)

, 1, iαr2

]

= J0(Q
1/2r). (16)

From Eqs. (10) and (11), Ez = E1J0(Q
1/2r), which shows that the modal structure of the

axial electric field reduces to a Bessel function dependence, the solution for a homogeneous

beam. The dispersion relation defined in Eqs. (13) and (14) reduce to the familiar dispersion

relation
κε

εκ

J1(Q
1/2Rd)

J0(Q1/2Rd)

(

1 − ω2
b0

Ω2

)1/2

+W = 0, (17)

for a homogeneous beam.

III. MACRO-PARTICLE MODEL

A macro-particle model of the Cerenkov instability is required to provide information

about the saturation of the instability and the transition from the linear to the saturated

regime. Freund and Ganguly [17] have done an extensive 3-D analysis of the Cerenkov

maser, and in this section we use their formalism to analyze the behavior of our system for

TM0n modes. We present the essential features of their analysis in this section but restrict

this paper to 1-D motion of the electrons. This analysis assumes the beam is weak (ωb � ω)

so that space-charge effects can be neglected and that the linear spatial growth rate is much

less than the axial wavenumber at synchronism. In this section, the system will be treated

as an amplifier by applying a time harmonic signal at z = 0. The electromagnetic field in the

waveguide is expressed in terms of the normal modes of the system without the presence of

the electron beam and the slowly varying amplitude and phase of the electromagnetic field

are determined from the dynamics of the electron beam. The axial electric field component

can be written as

Ez =

∞
∑

n=1

En(z)J0(κnr) cos Ψn(z), (18)

8



for 0 ≤ r ≤ Rd, and

Ez =

∞
∑

n=1

En(z) [anJ0(κεnr) + bnY0(κεnr)] cosΨn(z), (19)

for Rd ≤ r ≤ R0, where

Ψn(z) =

∫ z

0

kzn(z′)dz′ − ωt, (20)

and the local field amplitudes and the local wave numbers are assumed to be slowly varying

functions of z,
∣

∣

∣

∣

1

En

∂En

∂z

∣

∣

∣

∣

� kzn and

∣

∣

∣

∣

1

kzn

∂kzn

∂z

∣

∣

∣

∣

� kzn. (21)

The magnetic field can be determined from the axial electric field as

Bφ =

∞
∑

n=1

ω

κnc2
En(z)J1(κnr) sin Ψn(z), (22)

for 0 ≤ r ≤ Rd, and

Bφ =

∞
∑

n=1

ωε

κεnc2
En(z) [anJ0(κεnr) + bnY0(κεnr)] sinΨn(z), (23)

for Rd ≤ r ≤ R0. The constants an and bn are determined from boundary conditions at the

waveguide wall and at the vacuum-dielectric interface and are given by

an =
(π

2

)

κεnRd

[(

κεn

εκn

)

J1(κnRd)Y0(κεnRd) − J0(κnRd)Y1(κεnRd)

]

, (24)

and

bn = −
(π

2

)

κεnRd

[(

κεn

εκn

)

J1(κnRd)J0(κεnRd) − J0(κnRd)J1(κεnRd)

]

. (25)

Equation (26) defines the wave equation for the magnetic field in the vacuum region with

the macroscopic electron beam current as a source term.

(

∇2 − 1

c2
∂2

∂t2

)

B = −µ0∇× J . (26)

Inserting the magnetic field from Eq. (22) and (23) into the wave equation defined by (26),

neglecting second-order derivatives in amplitude and phase we obtain

∞
∑

n=1

ω

κnc2
J1(κnr)

[(

ω2

c2
− κ2

n − k2
zn

)

En sinΨn + 2kzn
∂En

∂z
cos Ψn

]

= µ0
∂Jz

∂r
. (27)
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Note that there is only an axial component of electron current since we are considering only

1-D electron motion. Similarly, we find for the dielectric region

∞
∑

n=1

ωε

κεnc2
[

anJ1(κεnr) + bnY1(κεnr)
]

×
[(

ω2

c2
− κ2

n − k2
zn

)

En sin Ψn + 2kzn
∂En

∂z
cos Ψn

]

= 0, (28)

with (ω/c)2 − κ2
n = ε(ω/c)2 − κ2

εn. The radial dependence of the magnetic field for TM0n

modes satisfies the orthogonality condition [17, 25]

∑

j

∫ ∫

Sj

1

εj
BmjBnjdSi = Anδmn, (29)

where Si denotes the jth region of the waveguide cross section. Equation (29) becomes

−1

2
AnR

2
dδmn =

∫ Rd

0

rJ1(κmr)J1(κnr)dr

+ε
κmκn

κεmκεn

∫ R0

Rd

r[amJ1(κεmr) + bmY1(κεmr)][anJ1(κεnr) + bnY1(κεnr)]dr, (30)

where the constant An is

An =

(

ε− 1

ε

)(

−J2
1 (κnRd) −

εk2
zn0

κ2
εn

J2
0 (κnRd) +

2

κnRd

εω2

c2κ2
εn

J0(κnRd)J1(κnRd)

)

−εR
2
0

R2
d

κ2
n

κ2
εn

[

anJ1(κεnR0) + bnY1(κεnR0)
]2
. (31)

Equations (27) and (28) can be cast into the following form using the orthogonality relation

in Eq. (30) and integrating by parts on the right hand side of Eq. (27),

ω

c2

[(

ω2

c2
− κ2

n − k2
zn

)

En sinΨn + 2kzn
∂En

∂z
cos Ψn

]

=
2µ0c

2κ2
n

ωAnR2
d

∫ Rd

0

rJzJ0(κnr)dr. (32)

By multiplying Eq. (32) by cosΨm or sinΨm and averaging over a wave period, we obtain

the following equations describing the evolution of the amplitude and phase of the electro-

magnetic wave in terms of the beam current

2kzn
dEn

dz
=

2µ0c
2κ2

n

πAnR2
d

∫ 2π
ω

0

dt

∫ Rd

0

rJzJ0(κnr) cos Ψndr, (33)

(

ω2

c2
− κ2

n − k2
zn

)

En =
2µ0c

2κ2
n

πAnR2
d

∫ 2π
ω

0

dt

∫ Rd

0

rJzJ0(κnr) sinΨndr, (34)

where the variation in axial wavenumber is represented in terms of a relative phase ψn(z)

kzn(z) = kzn0 +
dψn

dz
, (35)
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and kzn0 is the initial wavenumber determined from the cold dispersion relation. The macro-

scopic beam current is found by summing over the individual trajectories of an ensemble of

individual electrons,

Jz(z, τpq) = −enb(rq)
2πv0

ωNτ

Nτ
∑

p=1

δ(τ − τpq(z)), (36)

where τ = ωt and Nτ is the number of macro particles distributed over 2π in phase. The

relativistic dynamical equations can now be written for the (pq)th macro particle and the

nth mode as
dτpq

dz
=

ω

cβpq
=

k0

βpq
, (37)

and
dβpq

dz
= − e

mc2

[

(1 − βpq

)3/2

βpq

]

En(z)J0(κnrq) cos

(

kzn0z +
dψn

dz
z − τpq

)

. (38)

Equations (33) thru (38) constitute 2NrNτ + 2 differential equations (NrNτ equations for

particle phase, NrNτ equations for particle velocity, and 2 equations for the wave amplitude

and phase) which can be solved numerically for each mode. The particles enter the amplifier

uniformly distributed in phase.

IV. NUMERICAL RESULTS

For the numerical calculations, we assume the following parameters for the waveguide

structure: R0 = 2 cm, Rd = 1.5 cm, and ε = 4. The electron beam has an energy of 340 keV

and an injected beam current Ib ranges from 5 A to 500 A. Various scale lengths for the

density inhomogeneity are chosen, ranging from δ = −1, to uniform (δ = 0), to δ = 25 in

Eq. (1). These parameters were chosen to provide an operating frequency near 8 GHz for the

TM01 mode and 26 GHz for the TM02 mode with spatial growth rates that are sufficiently

large to saturate the instability within a 2 meter length of the dielectric loaded waveguide.

This set of parameters is fairly typical of experimental devices operating in the microwave

regime.

The dispersion relation for the two lowest order TM0n modes without an electron beam

is shown in Fig. 2 along with the beam line for a 340 keV electron beam intersecting the

TM01 and TM02 modes at 8.12 GHz and 26.26 GHz respectively, while Fig. 3 shows the

mode structure of these modes at the 8.12 GHz and 26.26 GHz operating points. Figure 4
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FIG. 2: Cold dispersion relation for the Cerenkov maser for the TM01 and TM02 modes with

R0 = 2 cm, Rd = 1.5 cm, and ε = 4 showing the beam line with β = 0.8 (340 keV).

shows the real part of the dispersion relation for the fully coupled system calculated from

Eqs. (13) and (14) with an electron beam current of 50 A and δ = 1 for the TM01 and TM02

modes. Figure 5 shows the normalized spatial growth rate, ΓnRd = −Im(kzn)Rd for the

TM01 and TM02 modes for a 50 A beam with δ = 1. The maximum spatial growth rates

occur at 8.12 GHz and 26.26 GHz for the TM01 and TM02 modes respectively.

Numerical simulations of the steady state amplifier configuration defined by Eqs. (33)–

(38) were solved for the TM01 and TM02 modes for our set of parameters using Nr = 30 and

Nτ = 128 which conserved energy to within 0.1% for both TM01 and TM02 modes. Figures 6

and 7 show the evolution of the microwave power and average beam energy for the TM01

and TM02 modes. The evolution of growth rate and wavenumber are shown in Figs. 8 and

9. Defining an instantaneous growth rate as

Gn(z) =
1

Ezn

dEzn

dz
, (39)

allows an average normalized growth rate and normalized wavenumber to be extracted in

the region of exponential growth as shown in Figs. 8 and 9. There are three distinct regions

of interaction; spatial lethargy, exponential growth, and saturation. During spatial lethargy
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mode amplitude for the TM02 mode is unity at r = 0.
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(z < 0.2 meter), the spatially growing wave is not yet dominant and the electrons have

not established the correct synchronous condition in a decelerating phase of the wave for

maximum exchange of energy. Schächter [26] estimates the lethargy length, dln as

dln =
1.412

√
3

2Γn
. (40)

For our set of parameters the lethargy length is estimated to range from

(0.1 meter < z < 0.2 meter) depending on the mode and the maximum spatial growth rate.

This is consistent with Figs. 6 and 7. When the correct synchronism is established, the

exponential growth region of operation is entered, (0.2 meter < z < 0.8 meter), until the

wave saturates (z > 0.8 meter) where the electrons have lost sufficient energy to slip into an

accelerating phase of the wave and execute synchrotron oscillations. The input power to

the amplifier for the TM01 mode is 51 W with the maximum saturated power of 2.55 MW

occurring at z = 0.8 m. The corresponding average beam energy at saturation is 288 keV,

a 52 keV beam energy loss. Similarly for the TM02 mode, the input power is 6.4 W with

a maximum saturated power of 600 kW occurring at z = 0.8 m. In this case, the average

beam energy at saturation is 328 keV, a 12 keV beam energy loss. The maximum satu-

rated conversion efficiencies for the TM01 and TM02 modes are 15% and 3.5% respectively.
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In the region of exponential growth the spatial growth rate and axial wavenumber are not

constant due to the evolving beam-wave dynamics during the interaction. The average nor-

malized growth rate and normalized wavenumber for the TM01 mode is 〈GnRd〉 = 0.12 and

〈kznRd〉 = 3.26, identical to results from the linear theory. Similarly, for the TM02 mode

we have, 〈GnRd〉 = 0.13 and 〈kznRd〉 = 10.4, again the same as linear theory predictions.

The difference between the initial electron beam velocity and the phase speed of the elec-

tromagnetic wave represents, in an average sense, a loss of beam energy, providing a simple

model for calculating the average conversion efficiency of the Cerenkov maser. The efficiency,

denoted by η, can be estimated as

η =
γ0 − γs

γ0 − 1
, (41)

where γs = 1/
√

1 − β2
s and βs = ω/〈kzn〉. This estimates the average conversion efficiency

at 10% and 3% for the TM01 and TM02 modes respectively. It should be noted that the

average conversion efficiency is less than the results from the macro-particle model, since the

maximum saturated conversion efficiency is determined at the maximum output power before

the wave has had a chance to give back some of it’s energy to the beam after saturating.

The synchrotron oscillations present after saturating are varying about an average beam

energy associated with the wave’s phase velocity, βs which is representative of the average

conversion efficiency.

It is well known that for a Cerenkov maser operating in the weak beam limit (ωb << ω)

the spatial growth rate of the unstable wave is proportional to I
1/3
b [27] for a given beam

energy. Figure 10 shows the maximum normalized spatial growth rates for the TM01 and

TM02 modes for a beam with δ = 1 showing the I
1/3
b dependence. Similarly, Fig. 11 shows the

real part of the normalized axial wavenumber for the same set of parameters. Figure 12 shows

the effect of the scale length of the beam inhomogeneity and that the growth rate is improved

as the beam current becomes more localized at the vacuum-dielectric interface. This is to

be expected since the transverse wavenumber in the beam region, κn is imaginary for the

Cerenkov instability resulting in a stronger axial electric field near the interface as shown in

Fig. 3. It is reasonable to assume that the strength of the interaction is proportional to the

axial electric field and the number of electrons available to participate in the interaction at

a particular radius. Since Ez ∼ J0(κnr), the growth rate Γn scales as

Fn =
2π

kzn0

∫ Rd

0

rnb(r)J0(κnr)dr =
2πn0

kzn0κ2
n

[(1 + δ)κnRdJ1(κnRd) − 2δJ2(κnRd)] , (42)
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FIG. 10: Normalized growth rates for TM01 and TM02 modes as a function of beam current for

δ = 1. Both spatial growth rates are proportional to I
1/3
b .

where nb(r) is defined in Eq. (1) and kzn0 is the solution of the cold dispersion relation. Plots

of the maximum spatial growth rates at 8.12 GHz and 26.26 GHz for the TM01 and TM02

modes are shown in Fig. 13 as a function of the integral defined in Eq. (42). From the

previous section describing the macro-particle approach, this coupling integral appears as

a driving term for the beam-wave interaction. Figures 10–13 show excellent agreement for

the normalized growth rates and wavenumbers as predicted from the linear and nonlinear

models.The small variations can be attributed to the fact that the beam-wave dynamics do

not exhibit pure exponential growth in the steady state amplifier model.
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V. TRANSIENT, SASE PIC SIMULATIONS

LSP [28] is an electromagnetic PIC code, originally developed by Mission Research Corpo-

ration (MRC). It is designed for plasma or beam simulations in 1-D, 2-D, or 3-D geometries

using either an explicit or implicit particle push. We use LSP in 2-D axially symmetric

geometry with an explicit particle push to model the Cerenkov microwave source. Since

PIC codes can be inherently noisy, LSP can employ various spatial and temporal filtering

algorithms to reduce noise. We examine the transient behavior of the Cerenkov amplifier

when driven by an electron beam with a fast rise time. When the system is driven in this

configuration, coherent spontaneous emission (CSE) associated with the spectral content of

the fast rising electron beam current pulse provides the seed for the instability allowing for

self-bunching of the electron beam. Since the radiation pulse occurs on short time scales

less than the single pass transit time of the device, numerical noise has not been an issue

for these simulations. SASE and superradiance initiated by CSE have been observed in the

Cerenkov maser [7, 21, 22]. Using PIC simulations, we can extract parameters associated

with both the linear and nonlinear regimes of operation. In addition, other nonlinear pro-
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cesses can be examined such as superradiance which is not predicted by the steady state

amplifier model. Also, details of the microwave pulse shape can be determined accurately

in the linear regime, from the beam injection point through the asymptotic linear regime

prior to nonlinear saturation using conventional transform techniques.

Spontaneous emission can arise from two sources; incoherent spontaneous emission associ-

ated with random phase variations of the electrons relative to the wave, and CSE associated

with the longitudinal structure of the electron current density. In cases where the longitu-

dinal electron current has spatial variations on the order of the radiation wavelength, the

coherent component may dominate over the incoherent component of spontaneous emission

by many orders of magnitude [29]. With incoherent spontaneous emission the radiation

intensity scales linearly with current. The incoherent component of spontaneous emission

can be estimated from the steady state saturated power by [7, 29],

Pincoh ∼ PSat

Nc

, (43)

where Nc is the number of electrons within a cooperation length (coherence length). The

cooperation length is lc = Slg, where lg is the gain length, with lg = 1/Γ, where Γ is the

spatial growth rate, and S is the slippage parameter,

S =

(

1 − vg

v0

)

, (44)

where vg = ∂ω/∂kz is the group velocity of the radiation. In the case of CSE the radiation

intensity scales quadratically with current. The coherent component of spontaneous emission

is estimated as [7, 29],

Pcoh ∼ P0(ω)N2
c | n(ω) |2, (45)

where P0(ω) = Pincoh/Nc is the power radiated by a single electron and n(ω) is the Fourier

transform of the longitudinal electron density function. The total spontaneous emission is

then,

Pspon(ω) = Pincoh(ω) + Pcoh(ω) = P0(ω)Nc + P0(ω)N2
c | n(ω) |2 . (46)

For these simulations, the coherent component of spontaneous emission dominates over the

incoherent component of spontaneous emission. For the TM01 mode, the nonlinear steady

state model predicts that the saturated power is 2.55 MW for a 50 A beam with δ = 1. The

cooperation length is 2.5 cm, (see calculation later in this section) yielding Nc ∼ 3.25× 1010
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electrons within a cooperation length, which results in approximately 78.5 µW of incoherent

spontaneous emission.

The geometry described in the earlier sections was simulated with the LSP PIC code

in r-z geometry with mesh cell sizes of ∆r = ∆z = 0.5 mm and a constant time step of

∆t = 0.5 ps. The total number of mesh cells was 8 × 104 with a maximum of ∼ 107 macro

particles. A 340 keV electron beam with a leading edge of the form

Ib(t) =
Ib0

2

(

1 − cosω0t
)

t ≤ π/ω0, (47)

was injected into a 2 meter long structure with ω0/2π = 8.12 GHz where the gain is maximum

for the TM01 mode. This results in a rise time of π/ω0 = 61.6 ps. After rising to a constant

value the beam pulse current remained at a constant value for about 8 ns. The form in

Eq. (47) is chosen since dIb/dt is continuous which reduces high frequency numerical noise

in the simulations while providing a significant seed signal at a frequency corresponding to

the maximum spatial gain. It is found that the coherent component of spontaneous emission

for this current pulse is approximately 64 W, a factor of 8 × 105 larger than the incoherent

component of spontaneous emission. A variety of beam currents and inhomogeneity scale

lengths are simulated and compared with the results from the linear and macro-particle

models for the TM01 mode which was the dominant mode excited in this system. To excite

higher order TM0n modes would require the seed signal at the requisite frequency to be

enhanced by pre-bunching of the electron beam. Small levels of TM02 and higher order

modes were observed in the simulations.

We will first extract parameters from the PIC simulations to compare with results from

the linear theory for the TM01 mode. We will then demonstrate a scaling relation for

SASE power production in the linear regime due to CSE associated with the leading edge

of the electron beam. Next, the nonlinear processes associated with saturation due to phase

trapping of the electrons will be examined. It is also found that microwave power continues to

grow beyond the steady state nonlinear saturation level, accompanied by a shift in frequency

and axial wavenumber. In addition, this superradiant regime is characterized by microwave

pulse compression and the emergence of several radiation pulses.

Figure 14 shows a typical pulse shape for the axial electric field at three spatial locations

along the z axis of the Cerenkov maser, in this case for a 50 A beam with δ = 1. The source

of the emission is CSE associated with the pulse shape for the leading edge of the electron
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FIG. 14: Temporal pulse evolution for 50 A beam with δ = 1 showing shift in resonant frequency

from 8.18 GHz in linear regime to 8.3 GHz in nonlinear regime as pulse evolves.

beam. Similarly, Fig. 15 shows the spatial structure of the microwave pulse at three instants

of time.

There are several features to be noted with the microwave pulses shown in Figs. 14 and

15. First, the radiation pulse is slipping further behind the head of the beam since the

group velocity is significantly lower than the beam velocity. Second, the frequency and

wavenumber shift to larger values as the pulse evolves due to the shift in the resonance term

in the dispersion relation as the beam loses energy and the instability is detuned. As the

frequency and wavenumber shift the group velocity of the pulse decreases, and the pulse

slips further behind the beam head. Third, the pulse width decreases as the radiation pulse

enters this nonlinear superradiant regime accompanied by significant spectral broadening.

In addition, subsequent pulses emerge behind the beam head, whose characteristics are

determined primarily by the nonlinear dynamics of the strongly bunched beam in this region.

The electric field, Ez(z, t) is Fourier transformed in the usual manner,

Ez(kz, ω) =

∫ ∞

−∞

∫ ∞

−∞

Ez(z, t)e
−i(kzz−ωt)dtdz, (48)

to extract the spectral content and the gain associated with the radiation pulse. The dom-
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from kzRd = 3.26 in linear regime to kzRd = 3.45 in nonlinear regime as pulse evolves.

inant frequency and wavenumber extracted from the radiation pulse in the linear regime is

8.18 GHz and 217.1 m−1 respectively. From this transform operation the spatial gain Γn is

extracted as a function of frequency as shown in Fig. 16. As can be seen there is excellent

agreement between the PIC simulation and the linear theory. Figures 17–19 demonstrate

the expected scaling when compared with the linear theory for a variety of beam currents

and coupling parameters.

Since, in the linear regime the electric field scales as Ez0e
Γnz, where Ez0 is the initial

electric field associated with CSE, and Ez0 ∝ dIb/dt, the SASE power in the linear regime

should scale as

P (Ib0) ∝ ω(Ib0)kz(Ib0)I
2
b0e

2Γn(Ib0)z, (49)

where ω and kz are only weakly dependent on Ib0 in the Compton or weak beam limit. This

scaling has been discussed in recent work on SASE and superradiance in Cerenkov masers,

[7, 22] and is shown in Fig. 20. Figure 21 shows the evolution of the longitudinal phase

space of the beam at three points in time. Strong modulation of the beam longitudinal

momentum is observed at t = 3 ns, the onset of phase trapping of the beam electrons is
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being established at t = 5 ns, and the particles are strongly trapped at t = 7 ns. It can be

seen in Fig. 21 that the onset of trapping occurs at a γβ ≈ 1.2 corresponding to a beam

energy of approximately 287 keV. This energy corresponds to a 53 keV energy loss consistent

with the results from the macro-particle model. The particles exhibit strong synchrotron

oscillations in the nonlinear regime at the synchrotron frequency

ωs =

[

−ω0eEs sinϕs

βsγ3
smc

]1/2

, (50)

where ω0 is the rf frequency, Es is the peak electric field at saturation, βsc is the synchronous

velocity, γs = 1/
√

1 − β2
s , and ϕs = −π/2 is the synchronous phase at saturation. The

wavenumber associated with synchrotron oscillations is ks = ωs/βsc. It was found from the

results of the macro-particle model discussed in Sec. IV that the saturation electric field

for the TM01 mode is ∼1 MV/m and γsβs = 1.25, resulting in a synchrotron wavelength,

λs = 2π/ks of approximately 0.48 meter as seen in Fig. 6.

The details of saturation in the transient regime associated with SASE and superradiant

emission is somewhat more complicated than in the steady state nonlinear model due to

the details of the spectral content of the radiation pulse, the gain of the amplifier, and
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the slippage of the radiation pulse along the beam. Figure 22 shows the group velocity as

calculated from the TM01 dispersion relation shown in Fig. 4. The group velocity of the

unstable mode near kzRd = 3.26 is approximately 0.65c resulting in a slippage factor of

S ≈ 0.19. The spatial growth rate of the TM01 mode at 8.18 GHz is approximately 7.7 m−1,

resulting in a cooperation length of 2.5 cm. As the beam advances a distance lg, the radiation

advances a factor of (1 − S)lg along the beam. As the instability detunes, the wavenumber

shifts to larger values (see Fig. 15) and as can be seen in Fig. 22 the group velocity will

decrease. From the PIC simulations, the peak of the radiation pulse is tracked to determine

the group velocity as shown in Fig. 23. This is done by evaluating the Hilbert transform of

the temporal pulse at each spatial location along the z axis and determining the location

of the maximum of the magnitude of the Hilbert transform. As can be seen in Fig. 23, the

group velocity, dzr/dtr is decreasing as the radiation pulse increases in amplitude, with an

especially strong effect as the pulse nears saturation. zr and tr denote the characteristic

defining the peak of the radiation pulse. In the linear regime for z < 0.6 meter it is found

that vg = 0.65c, consistent with linear theory, but decreases to vg ∼ 0.45c as the pulse
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FIG. 24: Microwave power for superradiant pulse and steady state result for 50 A beam with δ = 1.

The pulse width decreases as the pulse enters the superradiant regime.
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FIG. 25: Microwave power for superradiant pulse and steady state result for 200 A beam with

δ = 1. The pulse ultimately saturates as the pulse width approaches the cooperation length.
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enters the nonlinear regime. Figures 24 and 25 show the peak output power and spatial

pulse width (FWHM), σ of the radiation intensity along the amplifier for beam currents

of 50 A and 200 A respectively, along with results from the steady state amplifier model.

The input power for the steady state amplifier model is adjusted to match the approximate

initial power produced by CSE associated with the leading edge of the electron beam pulse.

As can be seen in Fig. 24 and 25 , the pulse grows exponentially in the linear regime with an

increasing pulse width due to dispersion. The superradiant pulse then continues to grow past

steady state nonlinear saturation with an accompanying decrease in pulse width. While the

superradiant pulse for the 50 A case does not saturate within the length of the simulation,

the 200 A case saturates at approximately 0.8 meter with a peak power of 36 MW and

a pulse width of approximately σ = 2.7lc = 4.6 cm, (∼ 3-4 rf cycles). In contrast, the

maximum saturated steady state power as calculated from the steady state amplifier model

is approximately 12 MW for a 200 A beam. The intensity of the superradiant pulse scales

linearly with distance and the pulse width, σ scales as σ ∝ 1/
√
z as seen in Figs. 24 and

25. As the pulse continues to propagate after saturating at z ∼ 0.8 meter, the pulse width

starts to increase as dispersive effects start to dominate. Growth of the superradiant pulse

is ultimately limited by reaching a pulse length on the order of several cooperation lengths.
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Power levels on the order of 100 MW with a pulse width on the order of σ = 2.4lc = 3.2

cm, (σ ∼ 2 rf cycles) were observed in the simulations. Figure 26 shows the superradiant

growth rate, ΓSR as a function of beam current.

VI. CONCLUSION

We have presented a comprehensive examination of the Cerenkov maser using three mod-

els of increasing complexity. First, the linear model was extended to include electron beams

with a radial parabolic density profile. The dispersion relation for this system was calculated

as well as the modal structure of the electromagnetic field, with the solutions approaching

the results of the limiting case of a uniform electron beam. The gain followed the well-known

scaling law with beam current (Γ ∝ I
1/3
b ) in the weak beam limit. It was found that the gain

could be enhanced by changing the scale length of the parabolic beam profile so that more

electrons participate in the interaction near the beam-dielectric interface. Second, a steady

state amplifier model based on the work of Freund and Ganguly [17] was used to determine

the saturation amplitude of the amplifier. The results of this model in the exponential gain

regime agreed with predictions from the linear theory for a large range of beam currents

and radial scale lengths of the profiled electron beam. Third, PIC simulations were used to

examine the SASE and superradiant regimes of the Cerenkov maser when driven with a fast

rise time electron beam. In the linear regime, the PIC results agreed with both the linear

model and the steady state amplifier model. The scaling of SASE output power with beam

current agreed with simple scaling arguments in the exponential gain regime. However, the

dynamics are significantly altered due to the effect of slippage of the radiation pulse behind

the beam head. It was shown, that as the pulse slips further behind the head of the beam,

amplification can continue beyond steady state nonlinear saturation levels as the Cerenkov

instability is detuned. As the superradiant pulse evolves, the pulse width decreases until it

approaches the cooperation length and the pulse saturates.
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